Encryption

Apple (AAPL) vs. FBI has started a serious debate about the line between security and privacy. The FBI says this is a case about the contents of one specific iPhone 5c. Apple says this is a case about securing data for everyone. I framed both arguments in a previous essay entitled “Apple v. FBI: How to Do Your Part.”

No one seems to want to have a civil, Socratic discussion about what it means to evolve the governance of a digital democracy. Instead, most people want to voice their opinions about terrorism, the law, and Apple. People also want to know if this particular iPhone 5c (or any iPhone) can be hacked, and if offers to hack it from white hat hackers, such as John McAfee, are real.

The Apple vs. FBI subject device, an iPhone 5c, can be hacked. This is true because of iOS 8 (the operating system running on the subject device) and the way all iPhone 5c’s were manufactured. Current vintage iPhones (5s, 6, 6s) could not be hacked the same way, so we should not be talking about this particular phone; we should be talking about encryption writ large, and how it is used in our daily lives.

What Is Encryption?

Encryption is the process of using algorithms to encode information with the specific goal of preventing unauthorized parties from accessing it. For digital communication, there are two popular methods of encryption: symmetric key and public key.

  • Symmetric key encryption requires both the sending and receiving parties to have the same key – hence the term “symmetric.”
  • Public key encryption is far more popular because the encryption key is publicly available, but only the receiving party has access to the decryption key.
  • How Can There Be Such a Thing as a “Public” Encryption Key?

    One of the most popular ways to create public encryption keys is to use a mathematical problem known as prime factorization (aka integer factorization). You start with two relatively large prime numbers. (Quick 6th Grade Math Refresher: A prime number is only divisible by 1 and itself.) Let’s call them P1 and P2. When you multiply them, the product is a composite number we’ll call “C.”

    Print Friendly, PDF & Email